skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vanni, Irene"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Unveiling the chemical fingerprints of the first (Population III, hereafter Pop III) stars is crucial for indirectly studying their properties and probing their massive nature. In particular, very massive Pop III stars explode as energetic pair-instability supernovae (PISNe), allowing their chemical products to escape in the diffuse medium around galaxies, opening the possibility to observe their fingerprints in distant gas clouds. Recently, threez> 6.3 absorbers with abundances consistent with an enrichment from PISNe have been observed with JWST. In this Letter, we present novel chemical diagnostics to uncover environments mainly imprinted by PISNe. Furthermore, we revise the JWST low-resolution measurements by analyzing the publicly available high-resolution X-Shooter spectra for two of these systems. Our results reconcile the chemical abundances of these absorbers with those from literature, which are found to be consistent with an enrichment dominated (>50% metals) by normal Pop II SNe. We show the power of our novel diagnostics in isolating environments uniquely enriched by PISNe from those mainly polluted by other Pop III and Pop II SNe. When the subsequent enrichment from Pop II SNe is included, however, we find that the abundances of PISN-dominated environments partially overlap with those predominantly enriched by other Pop III and Pop II SNe. We dub these areas confusion regions. Yet, the odd–even abundance ratios [Mg,Si/Al] are extremely effective in pinpointing PISN-dominated environments and allowed us to uncover, for the first time, an absorber consistent with a combined enrichment by a PISN and another Pop III SN for all the six measured elements. 
    more » « less
  2. Aims.This study explores the metal enrichment signatures attributed to the first generation of stars (Pop III) in the Universe, focusing on the E-XQR-30 sample – a collection of 42 high signal-to-noise ratio spectra of quasi-stellar objects (QSOs) with emission redshifts ranging from 5.8 to 6.6. We aim to identify traces of Pop III metal enrichment by analyzing neutral gas in the interstellar medium of primordial galaxies and their satellite clumps, detected in absorption. Methods.To chase the chemical signature of Pop III stars, we studied metal absorption systems in the E-XQR-30 sample, selected through the detection of the neutral oxygen absorption line at 1302 Å. The O Iline is a reliable tracer of neutral hydrogen and allowed us to overcome the challenges posed by the Lyman-αforest’s increasing saturation at redshifts above ∼5 to identify damped Lyman-αsystems (DLAs). We detected and analyzed 29 O Isystems atz ≥ 5.4, differentiating between proximate DLAs (PDLAs) and intervening DLAs. Voigt function fits were applied to obtain ionic column densities, and relative chemical abundances were determined for 28 systems. These were then compared with the predictions of theoretical models. Results.Our findings expand the study of O Isystems atz ≥ 5.4 fourfold. No systematic differences were observed in the average chemical abundances between PDLAs and intervening DLAs. The chemical abundances in our sample align with literature systems atz >  4.5, suggesting a similar enrichment pattern for this class of absorption systems. A comparison between these DLA-analogs at 4.5 <  z <  6.5 with a sample of very metal-poor DLAs at 2 <  z <  4.5 shows in general similar average values for the relative abundances, with the exception of [C/O], [Si/Fe] and [Si/O] which are significantly larger for the high-zsample. Furthermore, the dispersion of the measurements significantly increases in the high-redshift bin. This increase is predicted by the theoretical models and indicates a potential retention of Pop III signatures in the probed gas. Conclusions.This work represents a significant advancement in the study of the chemical properties of highly neutral gas atz ≥ 5.4, shedding light on its potential association with the metal enrichment from Pop III stars. Future advancements in observational capabilities, specifically high-resolution spectrographs, are crucial for refining measurements and addressing current limitations in the study of these distant absorption systems. 
    more » « less